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Abstract— This paper presents new methods for direct 

and inverse Fourier integral transform in piecewise- homogeneous 
axis. New formulas are obtained in the form of Hermite- type 
polynomial series. Method proposed by authors has features that 
distinguish it from well- known Fourier integral transform method. In 
particular, obtained formulas for direct and inverse Fourier integral 
transform in the form of Hermite- type polynomial series have 
symmetry and can be the basis for regularizing algorithms. In the 
article it is proved that the analogues of Hermite polynomials and 
Hermite functions form biorthogonal system.  

 

I. INTRODUCTION 
New methods for direct and inverse Fourier integral 
transform for piecewise-homogeneous axis are developed 
in this article. Solutions of the problems are obtained in 

the form of Hermite- type polynomial series. A well-known 
classical Fourier integral transform in homogeneous axis are 
represented in the form of Dirichlet integral. In this case 
Dirichlet formula is proved on the basis of classical Fourier 
integral trasform method. For our main results, we need to 
develop a Fourier integral trasforms with discontinuous 
coefficients and based on them to prove the expansion 
theorems in piecewise-homogeneous axis. Integral transforms 
with discontinuous coefficients are appeared in the 
mathematical literature in the 70th of the last century in the 
works of Uflyand Y.S. [1], Lenuk M.P. [2]; Nayda L.S. [3] , 
Protsenko V.S. [4], etc. 
       In section -1 the author's result is given from work [7]. In 
this section the direct and adjoint Sturm-Liouville problems 
with inner contact conditions are considered, their solutions 
serve as a kernels of direct and inverse Fourier integral 
transforms with discontinuous coefficients. Expansion 
theorems are formulated. 
       In section -2 analogues of polynomials and Hermite 
functions are constructed. 
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       In sections - 3 the main results are proved, the formulas of 
direct and inverse Fourier integral transform in a piecewise-
homogeneous axis are obtained. 

   

II. ONE-DIMENSIONAL INTEGRAL FOURIER TRANSFORMS WITH 
DISCONTINUOUS COEFFICIENTS 

 
       We will use required information from the author's work 
[7]. First note that the structure of integral transforms with the 
relevant variables are determined by the type of differential 
equation and the kind of environment where the problem is 
considered. Therefore decision of integral transforms with 
discontinuous coefficients are the problem for mathematic 
modeling in piece-wise homogeneous axis. It is clear this 
method is an effective for obtaining the exact solution of 
boundary-value problems for piece-wise homogeneous 
structures mathematical physics. 
       Integral transforms with discontinuous coefficients are 
constructed in accordance with author's work [7]. 
       Let ( )λϕ ,x  and ( )λϕ ,* x  be eigenfunctions of primal 
and dual Sturm-Liouville problems for Fourier operator on 
piece-wise homogeneous axis nI , 
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Similarly, the eigenfunction ( )λϕ ,* x , 
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Further normalization eigenfunctions are accepted by the 
following: 
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Let direct nF  and inverse 1−
nF  Fourier transforms on the 

Cartesian axis with n  contact points be defined by the rules, 
[7]: 
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We refer to the expansion theorems from [7] for function 

)(xf  and spectral function ( )λf̂ . 
  

Theorem 1.1 Let function )(xf  be defined, piece-wise 
continuous, absolutely integrable and has bounded variation 
on ,nI  then for each nIx ∈  the integral representation  
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is hold.   
 Theorem 2.2 Let function )(ˆ λf  be defined, piece-wise 
continuous, absolutely integrable and has bounded variation 
on ),,( ∞−∞  then for each ),,( ∞−∞∈λ  the integral 
representation  
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is hold.   
 
 

III. PIECE-WISE HOMOGENEOUS ANALOGUES OF HERMITE 
POLYNOMIALS AND HERMITE FUNCTIONS  

 
  

Definition 1. 3 Right and left analogs of power function 
satisfying the conditions (2) or (5) are defined by formulas 
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respectively.   
       The function  

( )λξβλ ,*2
ve  

is a generating function for Hermite polynomials [6] with 
piece-wise contstant coefficients, this means that 
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      Definition 2. 4 The Hermite polynomials with piece-wise 
constant coefficients are called the the sequence of functions 

),(*
, βzH nj  from (9).   

      In the homogeneous case  
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where −)(zH j  classical Hermite polynomial, [6]. Expansion 
of piece-wise homogeneous analogues of Hermite polynomials 
on the right piece-wise homogeneous analogues of the power 
function is followed from Definitions 1,2. 

  
        Theorem 5 3. If  
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is an expansion of Hermite polynomial with respect to ξ , then 

for their piece-wise homogeneous analogues ),(*
, βξnjH  the 
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is hold.   
 Definition 2. 6 For each fixed j = 0,1,2, ... we define a piece-
wise homogeneous analogue of Hermite function 

( ) 0,1,2,...=,,, jxH nj β  as follows: 
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 In the homogeneous case we have 
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where −)(zH j  classical Hermite polynomial, [6]. Expansion 
of piece-wise homogeneous analogues of Hermite polynomials 
on the left piece-wise homogeneous analogues of the power 
function is followed From Definitions 1,3. 

  
        Theorem 7 4. If  
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is the expansion of the Hermite function into Taylor series 
with respect to x  , then for its piece-wise homogeneous 
analogue ),(, βxH nj  the representation 
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        Theorem 5.8 System of functions ),(, βxH nj , 
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Proof. Consider the integral 
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       Changing the order of integration and applying the 
decomposition theorem, we obtain the equality 
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To complete the proof we use equation (10) and the 
uniqueness of Taylor's expansion. The theorem is proved. 

 

IV. NEW EXPANSION THEOREMS  
 

       We use the expansion theorem for function ( )xf  in 
Fourier- type integral from, [7]: 
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Write the last equality in the form 
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where 0>β . 
        In accordance with (9) formula (12) takes the form  
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Then we use definition -- 2 and finally get new analytical 
representation at the point x  
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We get a new expansion theorem.  
         Classical expansion theorem takes the form 
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If 0>β , then the last formula takes the form  
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Because of formula (9) we get 
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       We will change the order of integration and calculate the 
inner integral with respect to λ . On the basis of (10) we can 
write  
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Finally, second new expansion theorem takes the form 
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Now we get third new formula. To do this, formula (11) can be 
written in the form 
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        Use a Taylor series expansion with respect to λ   
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In the homogeneous case we have 
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is Hermite polynomial expansion on powers x,ξ , then for 

their piece-wise homogeneous analogues ),,(, βξ xH nj , so 
called Hermite-type polynomials, we have the representation 
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         In view of (17) we get  
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       To simplify last formula, we change the order of 
integration and compute the inner integral with respect to λ , 
substitute 0=x  in (10). Then 
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Taking into account the well-known formula from [6] 
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we get finally new analytical representation for )(xf   
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